「2023년 국립대학 육성사업」공동 공학교육혁신센터 운영 AI 로봇암 TECHFIX 제작 교육 안내문

□ 목표 및 필요성

- 인공지능 기술 응용 능력을 강화하여 다양한 산업 분야에서 활용 가능한 전문성을 갖춘 인재 양성
- 로봇암을 활용한 프로젝트를 기획하고 구현하며 창의성과 문제해 결 능력을 강화할 수 있는 기회 제공
- 국립대학 간 공동사업 추진을 통해 지속가능한 상생발전 호혜 사 업 발굴 및 네트워크 사업 활성화

□ 운영 개요

- 사업 개요
 - 교 육 명: 「2023년 국립대학 육성사업」AI 로봇암 TECHFIX 제작 교육
 - 교육일시: 2024년 1월 25일(목) ~ 1월 26일(금)
 - 교육장소: 목포대학교 공학교육혁신센터 설계및해석실습실(B18 1110호)
 - 모집인원: 선착순 4명 (총 20명 내외)
 - 모집기간: 공고일~2024.1.11.(목) 18시까지
 - 신청방법: 참가신청서 1부를 이메일 제출(hlww@jnu.ac.kr)
- **공동주관**: 공동 공학교육혁신센터 운영사업 참여대학(전남대, 전북대, 국립군산대, 국립목포대, 국립순천대)
- **참여대상**: 공동주관대학 소속 재학생
- 주요내용:
 - 하드웨어(전자 회로 및 PCB 설계, 로봇암 응용 하드웨어 개발 등)
 - 소프트웨어(펌웨어 프로그래밍 기초, 머신 러닝과 딥 러닝 적용 등)

○ 교육 안내사항

- 교육비 및 교육재료 무료, 숙식 제공, 교통비 무료
- 준비물: 여벌옷, 개인 세면도구, 개인 상비약 등 지침
- 개인 방역 자체 실시(마스크 및 개인 위생용품 각자 지참)

□ 추진계획(안)

○ 세부 교육내용(안)

 구분	교육 내용							
丁七	1. 모터 및 감지 센서의 이해							
	서보 모터와 스텝 모터의 차이와 감지 센서(온도, 조도, 거리 등)의 종류와							
	활용							
	2. 로봇암의 물리 구조 및 기구 설계							
	로봇암의 각 부분의 역할 및 기능 로봇암의 구동 원리와 기구 설계							
	고려 사항							
	3. 로봇암의 키네마틱스와 다이내믹스							
	로봇암의 위치 및 움직임을 이해하는 키네마틱스							
	로봇암의 다이내믹스 및 운동학 모델링							
	4. 전자 회로 및 PCB 설계							
	전자 회로의 기본 이론과 구성 요소 / PCB(Printed Circuit Board) 설계와 제작							
	방법							
	5. 전원 관리 및 배터리 시스템							
하드웨어	로봇암의 전원 공급과 전력 소비 관리 / 배터리 시스템의 선택과 활용							
	6. 로봇암의 안전과 보안							
	로봇암 사용 중의 안전 규정 및 표준							
	로봇암의 보안 이슈에 대한 이해와 대응 방안							
	7. 통신 시스템과 네트워크 연결							
	로봇암과 컴퓨터 또는 제어 장치 간의 통신 방법							
	8. 센서 데이터 수집 및 활용							
	다양한 센서의 데이터 수집과 해석 및 센서 데이터를 활용한 로봇암의 반응							
	및 제어							
	9. IoT(Internet of Things) 통합							
	로봇암을 IoT에 통합하여 원격 제어 및 데이터 수집 IoT 기능의 추가와 활용							
	방법							
	10. 실전 프로젝트 - 로봇암 응용 하드웨어 개발							
	참가자들이 원하는 응용 프로젝트를 설정하고 계획							

프로젝트 진행 중 발생 가능한 하드웨어적 문제 해결 방법							
프로젝트 구현 및 문제 해결을 위한 지속적인 하드웨어 개발 실습							
1. 펌웨어 프로그래밍 기초							
로봇암의 펌웨어 프로그래밍 기초							
C 또는 C++ 언어를 이용한 펌웨어 개발							
2. 로봇암 제어를 위한 프로그래밍							
로봇암의 동작 및 제어를 위한 프로그래밍 기초							
로봇암을 원하는 위치로 이동시키는 프로그램 개발							
3. 머신 러닝과 딥 러닝 적용							
머신 러닝과 딥 러닝의 기본 원리							
딥러닝을 활용한 로봇암 제어 프로그램 개발							
4. 비전 시스템과 이미지 프로세싱							
로봇암의 비전 시스템 동작 이해							
OpenCV를 활용한 이미지 프로세싱							
5. 통신 프로토콜 및 네트워크 통합							
로봇암과 컴퓨터 간의 소통							

※ 상기 일정은 진행 상황에 따라 부분적으로 수정될 수 있습니다.

○ 교육일정(안)

시간	1일차 (7h)	2일차 (8h)		
08:00~09:00		기상 및 조식		
09:00~09:50		로봇팔과 IoT의 통합		
10:00~11:50		로봇팔의 실제 응용 사례		
12:00~13:00	2:00~13:00 점심식사 후 등록 및 개회 점심식사			
13:00~13:50	:50 인공지능 로봇팔 소개 로봇팔 프로그래밍 등			
14:00~14:50	로봇팔 구성 요소 및 센서	로봇팔의 보안과 안전		
15:00~15:50	로봇팔 프로그래밍 기초			
16:00~16:50	로봇팔 모션 제어	프로젝트 실습 및 결과물 발표 및 피드백		
17:00~18:00	머신 러닝과 딥 러닝 기초	ene en x n= -		
18:00~19:00	석식			
19:00~19:50	머신 러닝과 딥 러닝 기초			
20:00~21:00	로봇팔의 비전 시스템			

※ 교육내용은 진행상황에 따라 변경될 수 있음

※ 접수번호는 작성하지 않습니다.

접수번호

AI 로봇암 TECHFIX 제작 교육										
소 속		대학교대학		학(부)과						
인적 사항	성명	학년	학번	전화번호	E-mail		비고			
	(서명)									
개인정보 수집·활용 및 제공에 대한 동의										
항 목						예	아니요			
수집하는 개인정보 항목 • 소속, 학번, 학년, 성명, 주민등록번호, 연락처										
개인정보의 수집 및 목적 • 「AI 로봇암 TECHFIX 제작 교육」 안내 및 보험기입을 위함										
* 수집한 고객의 개인정보를 교육기간 동안 보유하며 교육 종료 후 관련법규에 의거하여 안전하게 파기 (개인정보보호법 시행령 제16조) * 정보제공자가 개인정보 수집·이용에 대한 동의를 철회할 경우 수집한 개인정보를 즉시 파기										
거부 권 따른 불	정보 제공 동의 리 및 동의 거부 불이익 내용 또는 제한사항	 귀하는 개인정보 제공 동의를 거부할 권리가 있으며, 동의 거부에 따른 불이익은 없음. 다만, 추가적인 안내를 받을 수 없으며 참여가 제한됩니다. 								

「개인정보보호법」등 관련 법규에 의거하여 상기 본인은 위와 같이 개인정보 수집 및 활용에 동의함

국립목포대학교 공학교육혁신센터장 귀하

[※] 개인정보 제공자가 동의한 내용외의 다른 목적으로 활용하지 않으며, 제공된 개인정보의 이용을 거부하고자 할 때에는 개인정보 관리책임자를 통해 삭제를 요청 할 수 있음